
 

Differential Backups with Restic
JaxLUG - Travis Phillips - 08/20/2025



  2

Who Am I

I am a tall man dressed in black 
that knows stuff and does things



  3

What is Restic

● Per the documentation:
– Restic is a fast and secure backup program

● Restic is written in Golang so it’s cross platform
● Restic creates encrypted and compressed 

differential backups using a repository
– Repos can be local or remote



  4

What is a Differential Backup

● A differential backup is a backup solution that 
will only backup things that changed between 
backups
– This is great for large data volumes
– Increases the speed of back-ups after the initial 

backup, allowing for backup strategies that run 
every hour



  5

Creating a Repo Locally
● Before you can begin, you must create a repo
● You can create a repo locally with the following:

– $ restic init --repo [/path/to/repo]

● This will prompt you to enter a password for the 
repo.



  6

Contents of the Repo Folder

● Overall, this is for the Restic program to keep 
track of the data.

● However, with this being local, you can backup 
and move this directory to external media.



  7

Managing Keys

● You can create more then one password for the 
repo using the key command

● There is no permissions model - All keys have full 
access to the repo

● Follow the key command with a subcommand:
● list, add, remove, and passwd (changes a password)



  8

Managing Keys



  9

Support for Remote Repos
● Generally, a local backup isn’t super useful
● Restic can support remote repos over using 

various URI protocol handlers:
– SFTP
– REST (Requires setting up a Restic REST server)
– Cloud Storage Services:

● S3, Minio, Wasabi, Alibaba, Backblaze, OpenStack, 
Azure, GCP, and many others using rclone



  10

Running a Backup
● Backups can be performed on demand

– $ restic backup -r [/path/to/repo] 
[/path/to/backup]

● Note: Your first backup will take the longest!

● Each backup is called a snapshot



  11

Running a Backup



  12

Running a Backup - Stdin
● You can also have Restic back up from the 

output of a command using --stdin-from-command 
switch
– $ restic backup -r [/path/to/repo] --stdin-from-

command mysqldump [...] 

● Or from stdin from a pipe using the --stdin flag
– $ gzip big.dat | restic backup -r [/path/to/repo] 

--stdin



  13

Viewing Snapshots
● snapshots can be viewed with the following:

– $ restic snaphots -r [/path/to/repo]



  14

Viewing the Contents of a Snapshot
● You can use the ls subcommand with the ID

– $ restic ls -r [/path/to/repo] [snapshot_id]



  15

Remove a Snapshot
● Use the forget subcommand with the ID

– $ restic forget -r [/path/to/repo] [snapshot_id]



  16

Restoring from Backup
● There are three different ways to access your 

backups
– Directly restoring the file
– Mounting as a read-only fuse filesystem

● My personal favorite!

– Print the contents to stdout



  17

Restoring from Backup - Direct
● Can be used to restore an entire snapshot in 

place or to a different directory
– $ restic restore -r [/path/to/repo] [snapshot_id] 

--target [/path/to/restore]



  18

Restoring from Backup - Direct
● You can also use the latest instead of a 

snapshot ID.
– $ restic restore latest -r [/path/to/repo] --target 

[/path/to/restore]

● There is also the --include, --path, and --exclude 
flags to target specific files.
– $ restic restore latest -r [/path/to/repo] --target 

[/path/to/restore] --include test1.txt



  19

Restoring from Backup – Fuse FS
● One of the cooler features is mounting as a 

read-only Fuse FS.
● Mounts the entire repo and provides snapshot 

folders based off the timestamp, or a symlink to 
latest
– $ restic mount -r [/path/to/repo] [/mount/dir]



  20

Restoring from Backup – Fuse FS



  21

Restoring from Backup – Stdout
● Restic can also dump to stdout.
● This is useful to pipe into another command, 

such as mysql
– $ restic dump [snapshot_id] -r [/path/to/repo] 

[/path/to/file]



  22

Tidying Up with Environment Variable
● Restic supports environment variables to 

reduce switches needed and assist automation
● Examples:

– $ export RESTIC_REPOSITORY=/tmp/backup

– $ export RESTIC_PASSWORD=P@ssw0rd1

● With those in place, you no longer need to 
provide the repo path, nor the password.



  23

Tidying Up with Environment Variable



  24

Backup Exclusions
● Restic supports exclusions via a standalone 

switch (--exclude, --iexclude), or as a file list of 
exclusions (--exclude-file, --iexclude-file)

● This is useful to avoid backing up cache files!



  25

Remove Snapshot Following Policy
● Restic also has several --keep-* flags.  These 

can be used to delete snapshots in accordance 
with a retention policy.
– $ restic forget --prune --keep-hourly=24 --keep-

weekly=4 --keep-monthly=6 --keep-yearly=1



  26

Sanity Checking a Repo
● Restic has a check command that can check 

the integrity and consistency of a repo
– $ restic check

● It’s worth doing this following a prune operation 
or just periodically



  27

Exit Codes

● Restic does attempt 
to use exit codes that 
can provide details 
about how a 
command failed

● This is useful for 
scripting



  28

Automation
● Personally, I use two automations with Restic

– A manual script I can invoke to run a backup
– A cron job that runs hourly



  29

Demo and Script Review



  30

Questions
● Travis Phillips
● Github: 

– https://github.com/jaxhax-travis

● Restic Docs: 
– https://restic.readthedocs.io/en/latest/


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

