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Who Am I

I am a tall man dressed in black 
that knows stuff and does things
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What is Restic

● Per the documentation:
– Restic is a fast and secure backup program

● Restic is written in Golang so it’s cross platform
● Restic creates encrypted and compressed 

differential backups using a repository
– Repos can be local or remote
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What is a Differential Backup

● A differential backup is a backup solution that 
will only backup things that changed between 
backups
– This is great for large data volumes
– Increases the speed of back-ups after the initial 

backup, allowing for backup strategies that run 
every hour
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Creating a Repo Locally
● Before you can begin, you must create a repo
● You can create a repo locally with the following:

– $ restic init --repo [/path/to/repo]

● This will prompt you to enter a password for the 
repo.
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Contents of the Repo Folder

● Overall, this is for the Restic program to keep 
track of the data.

● However, with this being local, you can backup 
and move this directory to external media.
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Managing Keys

● You can create more then one password for the 
repo using the key command

● There is no permissions model - All keys have full 
access to the repo

● Follow the key command with a subcommand:
● list, add, remove, and passwd (changes a password)
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Managing Keys
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Support for Remote Repos
● Generally, a local backup isn’t super useful
● Restic can support remote repos over using 

various URI protocol handlers:
– SFTP
– REST (Requires setting up a Restic REST server)
– Cloud Storage Services:

● S3, Minio, Wasabi, Alibaba, Backblaze, OpenStack, 
Azure, GCP, and many others using rclone
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Running a Backup
● Backups can be performed on demand

– $ restic backup -r [/path/to/repo] 
[/path/to/backup]

● Note: Your first backup will take the longest!

● Each backup is called a snapshot
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Running a Backup
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Running a Backup - Stdin
● You can also have Restic back up from the 

output of a command using --stdin-from-command 
switch
– $ restic backup -r [/path/to/repo] --stdin-from-

command mysqldump [...] 

● Or from stdin from a pipe using the --stdin flag
– $ gzip big.dat | restic backup -r [/path/to/repo] 

--stdin
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Viewing Snapshots
● snapshots can be viewed with the following:

– $ restic snaphots -r [/path/to/repo]
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Viewing the Contents of a Snapshot
● You can use the ls subcommand with the ID

– $ restic ls -r [/path/to/repo] [snapshot_id]
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Remove a Snapshot
● Use the forget subcommand with the ID

– $ restic forget -r [/path/to/repo] [snapshot_id]
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Restoring from Backup
● There are three different ways to access your 

backups
– Directly restoring the file
– Mounting as a read-only fuse filesystem

● My personal favorite!

– Print the contents to stdout
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Restoring from Backup - Direct
● Can be used to restore an entire snapshot in 

place or to a different directory
– $ restic restore -r [/path/to/repo] [snapshot_id] 

--target [/path/to/restore]
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Restoring from Backup - Direct
● You can also use the latest instead of a 

snapshot ID.
– $ restic restore latest -r [/path/to/repo] --target 

[/path/to/restore]

● There is also the --include, --path, and --exclude 
flags to target specific files.
– $ restic restore latest -r [/path/to/repo] --target 

[/path/to/restore] --include test1.txt
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Restoring from Backup – Fuse FS
● One of the cooler features is mounting as a 

read-only Fuse FS.
● Mounts the entire repo and provides snapshot 

folders based off the timestamp, or a symlink to 
latest
– $ restic mount -r [/path/to/repo] [/mount/dir]
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Restoring from Backup – Fuse FS
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Restoring from Backup – Stdout
● Restic can also dump to stdout.
● This is useful to pipe into another command, 

such as mysql
– $ restic dump [snapshot_id] -r [/path/to/repo] 

[/path/to/file]
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Tidying Up with Environment Variable
● Restic supports environment variables to 

reduce switches needed and assist automation
● Examples:

– $ export RESTIC_REPOSITORY=/tmp/backup

– $ export RESTIC_PASSWORD=P@ssw0rd1

● With those in place, you no longer need to 
provide the repo path, nor the password.
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Tidying Up with Environment Variable
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Backup Exclusions
● Restic supports exclusions via a standalone 

switch (--exclude, --iexclude), or as a file list of 
exclusions (--exclude-file, --iexclude-file)

● This is useful to avoid backing up cache files!
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Remove Snapshot Following Policy
● Restic also has several --keep-* flags.  These 

can be used to delete snapshots in accordance 
with a retention policy.
– $ restic forget --prune --keep-hourly=24 --keep-

weekly=4 --keep-monthly=6 --keep-yearly=1
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Sanity Checking a Repo
● Restic has a check command that can check 

the integrity and consistency of a repo
– $ restic check

● It’s worth doing this following a prune operation 
or just periodically
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Exit Codes

● Restic does attempt 
to use exit codes that 
can provide details 
about how a 
command failed

● This is useful for 
scripting
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Automation
● Personally, I use two automations with Restic

– A manual script I can invoke to run a backup
– A cron job that runs hourly
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Demo and Script Review
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Questions
● Travis Phillips
● Github: 

– https://github.com/jaxhax-travis

● Restic Docs: 
– https://restic.readthedocs.io/en/latest/
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